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Introduction to Transaction Processing

• The execution of any “program” that either accesses (queries) or

changes the database contents is called a transaction.

• Serial transactions – two or more transactions are processed in serial

fashion with one transaction starting and completing before the next

transaction begins execution. At no time, is more than one

transaction processing or making progress.

• Interleaved transactions – two or more transactions are processed

concurrently with only one transaction at a time actually making

progress. This most often occurs on a single multi-programmed CPU.

• Simultaneous transactions – two or more transactions are processed

concurrently with any number progressing at one time. This is a

multiple CPU situation.
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Introduction to Transaction Processing (cont.)

t0 t1 t2 t3

T3 T1 T2 time 

Serial transactions (unknown number of CPUs)
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Introduction to Transaction Processing (cont.)

t0 t2 t4 t6

T3 T1 T2 time 

Interleaved transactions (single CPU)

t1 t5t3

T3 T2 T1
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Introduction to Transaction Processing (cont.)

t0 t1

T1

time 

Simultaneous transactions (3 CPUs shown)

T3

T2
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Introduction to Transaction Processing (cont.)

• When viewed at the transaction level, any transaction has the

potential to access the database in two ways:

– read(item): reads the value of some database item.

– write(item): write the value of an item into the database.

• These are not atomic operations.

• To read an item the following must occur:

– find the address of the disk block that contains the item.

– copy the disk block into buffer (if not already present).

– copy the item from the buffer into the “program”.
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Introduction to Transaction Processing (cont.)

• To write an item the following must occur:

– find the address of the disk block that contains the item.

– copy the disk block into buffer (if not already present).

– copy the item from the buffer into the “program”.

– store the updated block from the buffer back onto the disk (at some point

in time, usually not immediately).

• When to write back is typically up to the recovery system of

the database and may involve OS control.

• Too early of a write back may cause unnecessary data

transfers.

• Too late of a write back may cause unnecessary blocking.
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Concurrency Control

• Given a consistent (correct?) state of the database as input an

individually correct transaction will produce a correct state of

the database as output, if that transaction is executed in

isolation.

• The goal of concurrency control is to allow multiple

transactions to be processing simultaneously within a certain

time period with all of the concurrent transactions producing

a correct state of the database at then end of their concurrent

execution.
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Concurrency Control – Why Its Needed
• There are many different types of conflicts that can occur between

concurrently executing processes if concurrency control is not enforced.

Lost Update Problem (A Write-Write Conflict) (overwriting uncommitted data)

• Suppose two distinct transactions T1 and T2 are processing in the
concurrent order shown below accessing a common value n.

time action comment

t0 T1 performs read(n) suppose T1 reads value of n = 5

t1 T2 performs read(n) T2 will read a value of n = 5

t2 T1 performs write(n-1) T1 will write value of n = 4

t3 T2 performs write(n-1) T2 will also write value of n = 4!

• Problem: The update performed by T1 at time t2 is “lost” since the update
written by T2 at time t3 overwrites the previous value.
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Handling the Lost Update Problem

• There are several different ways in which the lost update

problem can be handled.

1. Prevent T2 from reading the value of n at time t1 on the grounds that T1 has

already read the value of n and may therefore update the value.

2. Prevent T1 from writing the value of n-1 at time t2 on the grounds that T2

has also read the same value of n and would therefore be executing on an

obsolete value of n, since T2 cannot re-read n.

3. Prevent T2 from writing the value of n-1 at time t3 on the grounds that T1

has already updated the value of n and since T1 preceded T2, then T2 is using

an obsolete value of n.

• The first two of these techniques can be implemented using locking

protocols, while the third technique can be implemented with time-

stamping. We’ll see both of these techniques later.
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The Dirty Read Problem

Dirty Read Problem (A Write-Read Conflict)(reading uncommitted data)

• Suppose two distinct transactions T1 and T2 are processing in the
concurrent order shown below accessing a common value n.

time action comment

t0 T1 performs read(n) suppose T1 reads value of n = 5

t1 T1 performs write(n-1) T1 writes a value of n = 4

t2 T2 performs read(n) T2 will read value of n = 4

t3 T1 aborts T2 is executing with a “bad” value of n

• Problem: T2 is operating with a value that was written by a transaction that
aborted prior to the completion of T2. When T1 aborts all of its updates must be
undone, which means that T2 is executing with a bad value of n and therefore
cannot leave the database in a consistent state.

Solution: T2 must also be aborted.
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The Unrepeatable Read Problem

Unrepeatable Read Problem (A Read-Write Conflict)

• Suppose two distinct transactions T1 and T2 are processing in the
concurrent order shown below accessing a common value n.

time action comment

t0 T1 performs read(n) suppose T1 reads value of n = 5

t1 T1 performs read(n) T1 reads a value of n = 5

t2 T2 performs write(n-1) T2 will write value of n = 4

t3 T1 performs read(n) T1 reads a different value of n this time

• Problem: When T1 performs its second read of n, the value is not the same as its
first read of n. T1 cannot repeat its read.

Solution: This problem is typically handled with locking which is rather inflexible, but
can also be solved with time-stamping.
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The Transaction Recovery System

• Whenever a transaction is submitted to the DBMS for

execution, the DBMS is responsible for making sure that

either:

1 All operations of the transaction are completed successfully and their

effect is permanently recorded in the database, or

2 The transaction has no effect whatsoever on the the database or any

other transaction.

• If a transaction fails after executing some of its operations,

problems will occur with consistency in the database.

Therefore, if a transaction fails after its is initiated but prior

to its commitment, all of the effects of that transaction must

be undone from the database.
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The Transaction Recovery System (cont.)

• Types of failures for a transaction:

– System crash – some type of hardware or system failure occurs.

– Transaction error – integer overflow, division by zero, operator

intervention.

– Local errors or exception conditions – required data is not available.

– Concurrency control enforcement – serializability is violated,

deadlock detection victim selection, etc.

– Disk errors – error correction/detection.

– Physical problems – fire, power failure, operator error, etc.
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The States of a Transaction

• A transaction can be in one of several different states:

– begin_transaction: marks the beginning of the transaction.

– read/write: specifies the various db operations performed by the
transaction.

– end_transaction: specifies that all read/write operations have ended
and the transaction is ready to terminate. Note: this does not actually
end the transactions time in the system – now it heads to the
concurrency control system for verification.

– commit: marks the successful end of the transaction – its effects are
now permanent (committed) in the database and cannot be undone.

– abort (rollback): marks the unsuccessful end of the transaction. All
changes and effects in the database must be undone and/or other
transactions must be aborted. No changes are committed for the
transaction.
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The States of a Transaction (cont.)

active

begin_transaction

partially

committed

failed

committed

terminated

end_transaction

read/write

abort

abort

commit
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System Log

• The system log keeps track of all transaction operations that

affect values of database items.

• The information in the log is used to perform recovery

operations from transaction failures.

• Most logs consist of several levels ranging from the log

maintained in main memory to archival versions on backup

storage devices.

• Upon entering the system, each transaction is given a unique

transaction identifier (timestamps are common).
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System Log (cont.)

• In the system log, several different types of entries occur

depending on the action of the transaction:

– [start, T]: begin transaction T.

– [write, T, X, old, new]: transaction T performs a write on object X,

both old and new values of X are recorded in the log entry.

– [read, T, X]: transaction T performs a read on object X.

– [commit, T]: transaction T has successfully completed and indicates

that its changes can be made permanent.

– [abort, T]: transaction T has aborted.

• Some types of recovery protocols do not require read

operations be logged.
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Commit Point

• A transaction T reaches its commit point when all of its

operations that access the database have successfully

completed and the effect of all of these operations have been

recorded in the log.

• Beyond the commit point, a transaction is said to be

committed and its effect on the database is assumed to be

permanent. It is at this point that [commit, T] is entered into

the system log.

• If a failure occurs, a search backward through the log (in

terms of time) is made for all transactions that have written a

[start, T] into the log but have not yet written [commit, T]

into the log. This set of transactions must be rolled back.
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ACID Properties of Transactions

• Atomcity – a transaction is an atomic unit of processing; it is
either performed in its entirety or not at all.

• Consistency – a correct execution of the transaction must
take the database from one consistent state to
another.

• Isolation – a transaction should not make its updates visible
to other transactions until it is committed. Strict
enforcement of this property solves the dirty read
problem and prevents cascading rollbacks from
occurring.

• Durability – once a transaction changes the database and
those changes are committed, the changes
must never be lost because of a failure.
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Schedules and Recoverability

• When transactions are executing concurrently in an

interleaved fashion, the order of execution of the operations

from the various transactions forms what is known as a

transaction schedule (sometimes called a history).

A schedule S of n transactions T1, T2, T3, ..., Tn is an

ordering of the operations of the transactions where for

each transaction Ti  S, each operation in Ti occurs in

the same order in both Ti and S.
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Schedules and Recoverability (cont.)

• The notation used for depicting schedules is:

– ri(x) means that transaction i performs a read of object x.

– wi(x) means that transaction i performs a write of object x.

– ci means that transaction i commits.

– ai means that transaction i aborts.

• An example schedule: SA = (r1(x), r2(x), w1(x), w2(x), c1, c2)

• This example schedule represents the lost update problem.

• Another example:

SB = (r1(x), r1(y), w1(y), r2(x), w1(x), w2(y), c2, c1)
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Conflict in a Schedule

• Two operations in a schedule are said to conflict if they

belong to different transactions, access the same item, and

one of the operations is a write operation.

• Consider the following schedule:

SA = (r1(x), r2(x), w1(x), c1, c2)

r2(x) and w1(x) conflict

r1(x) and r2(x) do not conflict.
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Recoverability

• For some schedules it is easy to recover from transaction

failures, while for others it can be quite difficult and

involved.

• Recoverability from failures depends in large part on the

scheduling protocols used. A protocol which never rolls

back a transaction once it is committed is said to be a

recoverable schedule.

• Within a schedule a transaction T is said to have read from a

transaction T* if in the schedule some item X is first written

by T* and subsequently read by T.
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Recoverability (cont.)

• A schedule S is a recoverable schedule if no transaction T in S commits

until all transactions T* that have written an item which T reads have

committed.

– For each pair of transactions Tx and Ty, if Ty reads an item previously written

by Tx, then Tx must commit before Ty.

Example: SA = (r1(x), r2(x), w1(x), r1(y), w2(x), c2, w1(y), c1)

This is a recoverable schedule since, T2 does not read any item written by T1 and

T1 does not read any item written by T2.

Example: SB = (r1(x), w1(x), r2(x), r1(y), w2(x), c2, a1)

This is not a recoverable schedule since T2 reads value of x written by T1

and T2 commits before T1 aborts. Since T1 aborts, the value of x written

by T2 must be invalid so T2 which has committed must be rolled back

rendering schedule SB not recoverable.
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Cascading Rollback

• Cascading rollback occurs when an uncommitted transaction
must be rolled back due to its read of an item written by a
transaction that has failed.

Example: SA = (r1(x), w1(x), r2(x), r1(y), r3(x), w2(x), w1(y), a1)

In SA, T3 must be rolled back since T3 read value of x produced by T1 and
T1 subsequently failed. T2 must also be rolled back since T2 read value of
x produced by T1 and T1 subsequently failed.

Example: SB = (r1(x), w1(x), r2(x), w2(x), r3(x), w1(y), a1)

In SB, T2 must be rolled back since T2 read value of x produced by T1 and
T1 subsequently failed. T3 must also be rolled back since T3 read value of
x produced by T2 and T2 subsequently failed. T3 is rolled back, not
because of the failure of T1 but because of the failure of T2.
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Cascading Rollback (cont.)

• Cascading rollback can be avoided in a schedule if every

transaction in the schedule only reads items that were written

by committed transactions.

• A strict schedule is a schedule in which no transaction can

read or write an item x until the last transaction that wrote x

has committed (or aborted).

– Example: SA = (r1(x), w1(x), c1, r2(x), c2)
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Serializability

• Given two transactions T1 and T2, if no interleaving of the

transactions is allowed (they are executed in isolation), then

there are only two ways of ordering the operations of the two

transactions.

Either: (1) T1 executes followed by T2

or (2) T2 executes followed by T1

• Interleaving of the operations of the transactions allows for

many possible orders in which the operations can be

performed.
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Serializability (cont.)

• Serializability theory determines which schedules are correct

and which are not and develops techniques which allow for

only correct schedules to be executed.

• Interleaved execution, regardless of what order is selected,

must have the same effect of some serial ordering of the

transactions in a schedule.

• A serial schedule is one in which every transaction T that

participates in the schedule, all of the operations of T are

executed consecutively in the schedule, otherwise the

schedule is non-serial.
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Serializability (cont.)

• A concurrent (or interleaved) schedule of n transactions is serializable if

it is equivalent (produces the same result) to some serial schedule of the

same n transactions.

• A schedule of n transactions will have n! serial schedules and many more

non-serial schedules.

• Example: Transactions T1, T2, and T3 have the following serial

schedules: (T1, T2, T3), (T1, T3, T2), (T2, T1, T3), (T2, T3, T1), (T3,

T1, T2), and (T3, T2, T1).

• There are two disjoint sets of non-serializable schedules:

– Serializable: those non-serial schedules which are equivalent to one or more

of the serial schedules.

– Non-serializable: those non-serial schedules which are not equivalent to any

serial schedule.
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Serializability (cont.)

• There are two main types of serializable schedules:

– Conflict serializable: In general this is an O(n3) problem where n

represents the number of vertices in a graph representing distinct

transactions.

– View serializable: This is an NP-C problem, meaning that the only

known algorithms to solve it are exponential in the number of

transactions in the schedule.

• We’ll look only a conflict serializable schedules.

• Recall that two operations in a schedule conflict if (1) they

belong to different transactions, (2) they access the same

database item, and (3) one of the operations is a write.
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Conflict Serializability

• If the two conflicting operations are applied in different
orders in two different schedules, the effect of the schedules
can be different on either the transaction or the database, and
thus, the two schedules are not conflict equivalent.

– Example: SA = (r1(x), w2(x))

SB = (w2(x), r1(x))

The value of x read in SA may be different than in SB.

– Example: SA = (w1(x), w2(x), r3(x))

SB = (w2(x), w1(x), r3(x))

The value of x read by T3 may be different in SA than in SB
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Conflict Serializability (cont.)

• To generate a conflict serializable schedule equivalent to

some serial schedule using the notion of conflict equivalence

involves the reordering of non-conflicting operations of the

schedule until an equivalent serial schedule is produced.

• The technique is this: build a precedence graph based upon

the concurrent schedule. Use a cycle detection algorithm on

the graph. If a cycle exists, S is not conflict serializable. If

no cycle exists, a topological sort of the graph will yield an

equivalent serial schedule.
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Algorithm Conflict_Serializable
Algorithm Conflict_Serializable

//input:  a concurrent schedule S

//output:  no – if S is not conflict serializable, a serial schedule S* equivalent to S otherwise.

Conflict_Serializable(S)

1. for each transaction TX  S, create a node (in the graph) labeled TX.

2. (RAW: READ AFTER WRITE) for each case in S where TY executes read(a) after TX

executes write(a) create the edge TX  TY.  The meaning of this edge is that TX must 

precede TY in any serially equivalent schedule.

3. (WAR: WRITE AFTER READ) for each case in S where TY executes write(a) after TX

executes read(a) create the edge TX  TY.  The meaning of this edge is that TX must 

precede TY in any serially equivalent schedule.

4. (WAW: WRITE AFTER WRITE) for each case in S where TY executes write(a) after TX

executes write(a) create the edge TX  TY.  The meaning of this edge is that TX must 

precede TY in any serially equivalent schedule.

5. if the graph contains a cycle then return no, otherwise topologically sort the graph and 

return a serial schedule S* which is equivalent to the concurrent schedule S.
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Conflict Serializability – Example #1

T1 T2

Graph contains no  cycle, so SC is conflict serializable

1:  r1(a) precedes w2(a)  (WAR)

2:  w1(a) precedes r2(a)  (RAW)

3:  w1(a) precedes w2(a)  (WAW)

1,2,3

Let SC = (r1(a), w1(a), r2(a) w2(a), r1(b), w1(b))
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Conflict Serializability – Example #1

T1 T2

w1(a) precedes r2(a)  (RAW)

Graph contains a cycle, so SC is not conflict serializable

Let SC = (r1(a), r2(a), w1(a), r1(b), w2(a), w1(b))

1:  r1(a) precedes w2(a)  (WAR)

2:  r2(a) precedes w1(a)  (WAR)

3:  w1(a) precedes w2(a)  (WAW)

2

1,3
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Conflict Serializability – Example #2

Let SC = (r3(y), r3(z), r1(x), w1(x), w3(y), w3(z), r2(z), r1(y), w1(y),

r2(y), w2(y), r2(y), w2(y) )

Graph contains no cycles, so a serially equivalent schedule would be T3, T1, T2.

T1 T2

T3

edge reason

1 w3(y) precedes r2(y)  (RAW)

2 w1(x) precedes r2(x)  (RAW)

3 w3(z) precedes r2(z)  (RAW)

4 w1(y) precedes r2(y)  (RAW)

5 r3(y) precedes w1(y)  (WAR)

6 r1(x) precedes w2(x)  (WAR)

7 r1(y) precedes w2(y)  (WAR)

There are seven other conflicts that can

be found in this schedule, but none of

them will introduce a cycle. Find the

missing seven.

2, 4, 6, 7

1, 35
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Concurrency Control Techniques

• There are several different techniques that can be employed

to handle concurrent transactions.

• The basic techniques fall into one of four categories:

1. Locking protocols

2. Timestamping protocols

3. Multiversion protocols – deal with multiple versions of the same data

4. Optimistic protocols – validation and certification techniques
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Locking Protocols

• Transactions “request” locks and “release” locks on database
objects through a system component called a lock manager.

• Main issues in locking are:

– What type of locks are to be maintained.

– Lock granularity: runs from very coarse to very fine.

– Locking protocol

– Deadlock, livelock, starvation

– Other issues such as serializability

LOCK

MANAGER

process

request

grant

deny

issue lock – transaction continues

abort

block in queue
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Locking Protocols (cont.)

• Locking protocols are quite varied in their degree of

complexity and sophistication, ranging from very simple yet

highly restrictive protocols, to quite complex protocols which

nearly rival time-stamping protocols in their flexibility for

allowing concurrent execution.

• In order to give you a flavor of how locking protocols work,

we’ll focus on only the most simple locking protocols.

• While the basic techniques of all locking protocols are the

same, in general, the more complex the locking protocol the

higher the degree of concurrent execution that will be

permitted under the protocol.
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Locking Granularity

• When devising a locking protocol, one of the first things that must

be considered is the level of locking that will be supported by the

protocol.

• Simple protocols will support only a single level of locking while

more sophisticated protocols can support several different levels of

locking.

• The locking level (also called the locking granularity), defines the

type of database object on which a lock can be obtained.

• The coarsest level of locking is at the database level, a transaction

basically locks the entire database while it is executing.

Serializability is ensured because with the entire database locked,

only one transaction can be executing at a time, which ensures a

serial schedule of the transactions.
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Locking Granularity (cont.)

• Moving toward a finer locking level, typically the next level of locking
that is available is at the relation (table) level. In this case, a lock is
obtained on each relation that is required by a transaction to complete its
task.

– If we have two transactions which need different relations to accomplish their
tasks, then they can execute concurrently by obtaining locks on their
respective relations without interfering with one another. Thus, the finer
grain lock has the potential to enhance the level of concurrency in the system.

• The next level of locking is usually at the tuple level. In this case several
transactions can be executing on the same relation simultaneously,
provided that they do not need the same tuples to perform their tasks.

• At the extreme fine end of the locking granularity would be locks at the
attribute level. This would allow multiple transactions to be
simultaneously executing in the same relation in the same tuple, as long
as they didn’t need the same attribute from the same tuple at the same
time. At this level of locking the highest degree of concurrency will be
achieved.
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Locking Granularity (cont.)

• There is, unfortunately a trade-off between enhancing the level of

concurrency in the system and the ability to manage the locks.

– At the coarse end of the scale we need to manage only a single lock,

which is easy to do, but this also gives us the least degree of

concurrency.

– At the extremely fine end of the scale we would need to manage an

extremely large number of locks in order to achieve the highest

degree of concurrency in the system.

• Unfortunately, with VLDB (Very Large Data Bases) the number

of locks that would need to be managed at the attribute level poses

too complex of a problem to handle efficiently and locking at this

level almost never occurs.
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Locking Granularity (cont.)

– For example, consider a fairly small database consisting of 10

relations each with 10 attributes and suppose that each relation has

1000 tuples. This database would require the management of 10  10

 1000 = 100,000 locks. A large database with 50 relations each

having 25 attributes and assuming that each relation contained on the

order of a 100,000 tuples; the number of locks that need to be

managed grows to 1.25108 (125 million locks).

• A VLDB with hundreds of relations and hundreds of attributes and

potentially millions of tuples can easily require billions of locks to

be maintained if the locking level is at the attribute level.

• Due to the potentially overwhelming number of locks that would

need to be maintained at this level, a compromise to the tuple level

of locking is often utilized.
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Types of Locks

• There are different types of locks that locking protocols may
utilize.

• The most restrictive systems use only exclusive-locks (X-
lock also called a binary lock).

• An exclusive lock permits the transaction which holds the
lock exclusive access to the object of the lock.

• The process of locking and un-locking objects must be
indivisible operations within a critical section. There can be
no interleaving of issuing and releasing locks.

If transaction TX holds an X-lock on object A then no distinct transaction TY

can obtain an X-lock on object A until transaction TX releases the X-lock on

object A. TY is blocked awaiting the X-lock on object A.
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X-Lock Protocol

• When the lock manager grants a transaction’s request for a

particular lock, the transaction is said to “hold the lock” on

the object.

• Under the X-lock protocol a transaction must obtain, for

every object required by the transaction, an X-lock on the

object. This applies to both reading and writing operations.

Before any transaction TX can read or write an object A, it must first acquire an X-

lock on object A. If the request is granted TX will proceed with execution. If the

request is denied, TX will be placed into a queue of transactions awaiting the X-

lock on object A, until the lock can be granted. After TX finishes with object A, it

must release the X-lock.
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Serializability Under X-Lock Protocol

Algorithm TestSerializiabiltyXLock

//input:  a concurrent schedule S under X-lock protocol

//output: if S is serializable, then a serially equivalent schedule S is produced, otherwise, no.

TestSerializabilityXLock(S)

1. let S = (a1, a2, ..., an) where “action” ai is either (TX: Xlock A) or (TX: Unlock A)

2. construct a precedence graph of n nodes where n is the number of distinct 

transactions in S.

3. proceed through S as follows:

• if ar = (TX: Unlock A) then look for the next action as of the form (TY: Xlock A).  

If one exists, draw an edge in the graph from TX to TY.  The meaning of this 

edge is that in any serially equivalent schedule TX must precede TY.

4. if the graph constructed in step 3 contains a cycle, then S is not equivalent to any 

serial schedule (i.e., S is not serializable).  If no cycle exists, then any topological 

sort of the graph will yield a serial schedule equivalent to S.



COP 4710: Database Systems  (Transaction Processing)          Page 48 Mark Llewellyn ©

Example - X-Lock Protocol and Serializability

Let S = [(T1: Xlock A), (T2: Xlock B), (T2: Xlock C), (T2: Unlock B),

(T1: Xlock B), (T1: Unlock A), (T2: Xlock A), (T2:Unlock C),

(T2: Unlock A), (T3: Xlock A), (T3: Xlock C), (T1: Unlock B),

(T3: Unlock C), (T3: Unlock A)]

T1 T2

T3

Edge #1:  (T2: Unlock B)...(T1:Xlock B)

Edge #2: (T1: Unlock A)...(T2: Xlock A)

Edge #3: (T2: Unlock C)...(T3: Xlock C)

Edge #4: (T2: Unlock A)...(T3: Xlock A)

3

2

1

Not serializable, cycle exists

, 4
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Problems with X-Lock Protocol

• The X-lock protocol is too restrictive.

• Several transactions that need only to read an object must all wait in turn
to gain an X-lock on the object, which unnecessarily delays each of the
transactions.

• One solution is to issue different types of locks, called shared-locks (S-
locks or read-locks) and write-locks (X-locks).

• The lock manager can grant any number of shared locks to concurrent
transactions that need only to read an object, so multiple reading is
possible. Exclusive locks are issued to transactions needing to write an
object.

• If an X-lock has been issued on an object to transaction TX, then no other
distinct transaction TY can be granted either an S-lock or an X-lock until
TX releases the X-lock. If any transaction TX holds an S-lock on an
object, then no other distinct transaction TY can be granted an X-lock on
the object until all S-locks have been released.
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Serializability Under X/S-Lock Protocol
Algorithm TestSerializiabiltyX/SLock

//input:  a concurrent schedule S under X/S-lock protocol

//output: if S is serializable, then a serially equivalent schedule S is produced, otherwise, no.

TestSerializabilityXLock(S)

1. let S = (a1, a2, ..., an) where “action” ai is one of (TX: Slock A),  (TX: Xlock A)            

or (TX: Unlock A).

2. construct a precedence graph of n nodes where n is the number of distinct 

transactions in S.

3. proceed through S as follows:

• if ax = (TX: Slock A) and ay is the next action (if it exists) of the form (TY: Xlock 

A) then draw an edge from TX to TY.

• if ax = (TX: Xlock A) and there exists an action az = (TZ: Xlock A) then draw an 

edge in the graph from TX to TZ.  Also, for each action ay of the form (TY: Slock 

A) where ay occurs after ax (TX: Unlock A) but before aZ (TZ: Xlock A) draw an 

edge from TX to TY.   If az does not exist, then TY is any transaction to perform 

(TY: Slock A) after (TX: Unlock A).

4. if the graph constructed in step 3 contains a cycle, then S is not equivalent to any 

serial schedule (i.e., S is not serializable).  If no cycle exists, then any topological 

sort of the graph will yield a serial schedule equivalent to S.
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Example – X/S-Lock Protocol and Serializability

Let S = [(T3: Xlock A), (T4: Slock B), (T3: Unlock A), (T1: Slock A),

(T4: Unlock B), (T3: Xlock B), (T2: Slock A), (T3:Unlock B),

(T1: Xlock B), (T2: Unlock A), (T1: Unlock A), (T4: Xlock A),

(T1: Unlock B), (T2: Xlock B), (T4: Unlock A), (T2: Unlock B)]

Edge #1: (T4: Slock B)...(T3: Xlock B)

Edge #2: (T1: Slock A)...(T4: Xlock A)

Edge #3: (T2: Slock A)...(T4: Xlock A)

Edge #4: (T3: Xlock A)...(T4: Xlock A)

Edge #5: (T3: Unlock A)...(T1: Slock A)

Edge #6: (T3: Unlock A)...(T2: Slock A)

Edge #7: (T3: Xlock B)...(T1:Xlock B)

Edge #8: (T1: Xlock B)...(T2: Xlock B)

Not serializable, cycle exists

T1 T2

T3

2

1T4

3

4

5

8

6

,7
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Problems Locking Protocols

• The X-lock protocol can lead to deadlock.

– For example consider the schedule S = [(T1:Xlock A), (T2: Xlock B),

(T1: Xlock B), (T2: Xlock A)]

• While there are many different techniques that can be used to

avoid deadlock, most are not suitable to the database

environment.

T1 is blocked T2 is blocked
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Deadlock Avoidance - Problems Locking Protocols
(cont.)

• Impose a total ordering on the objects.

– Problem is the set of lockable objects is very large and changes dynamically.

– Many database transactions determine the lockable object based on content

and not name.

– The locking scope of a transaction is typically determined dynamically.

• Two-phase locking protocols.

– All locks are granted at the beginning of a transaction’s processing or no

locks are granted. Transactions which cannot acquire all of the locks they

need are suspended without being granted any locks.

– Leads to low data utilization, low-levels of concurrency and livelock.

– Livelock occurs when a transaction that needs several “popular” items is

consistently blocked by transactions which need only one of the popular

items.
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Concurrency Control: Locking in B+ Trees

• An often used and straightforward approach to
concurrency control for B+ trees and ISAM indices
is to ignore the index structure and treat each page
as a data object utilizing some variant of two-phase
locking.

• Unfortunately, this simplistic locking strategy leads
to very high lock contention in the higher levels of
the tree, since each search begins at the route and
proceeds along some path to a leaf node.

• Fortunately, there are several much better locking
approaches available that exploit the hierarchical
nature of the tree index that will ensure
serializability and reduce the locking overhead.
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Concurrency Control: Locking in B+ Trees (cont.)

• Two observations are important to understand how B+

locking strategies can be developed:

1. The higher levels of the tree only direct searches. All of the “real”
data is in the leaf level.

2. For insertions, a node must be locked (exclusively) only if a split can
propagate up to it from the modified leaf node.

• Searches should obtain shared locks on modes, starting at the
root and proceeding along a path to the desired leaf.

• The first observation suggests that a lock on a node can be
released as soon as a lock on a child node is obtained,
because searches never go back up the tree.
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Concurrency Control: Locking in B+ Trees (cont.)

• A conservative (pessimistic) locking strategy for inserts
would be to obtain exclusive locks on all the nodes as we go
down from the root to the leaf node that will be modified,
because splits can propagate all the way from the leaf to the
root in the worst case.

• However, once the child of a node is locked, the lock on that
node would only be required to be maintained in the event
that a split could propagate back to it.

• Specifically, if the child of this node (on the path to the
modified leaf) is not full when it is locked, any split that
propagates up to the child can be resolved at the child and
will not propagate further up the tree to the current node.

• Therefore, when the child node is locked, the lock on the
parent node can be released if the child node is not full.
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Concurrency Control: Locking in B+ Trees (cont.)

• The locks held by an inserting transaction
force any other transaction following the
same path to wait at the earliest point (the
node closest to the root) that might be
affected by the insert.

• This technique of locking a child node and (if
possible) releasing the lock on its parent is
called lock-coupling.

• The examples on the next few pages illustrate
concurrency control in B+ trees.
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Concurrency Control: Locking in B+ Trees (cont.)

20

10 35

6 12 23 38 44

3 4 6 9 10 11 12 13 20 22 23 31 35 36 38 41 44

Initial B+ tree
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Search For Key Value 38

20

10 35

6 12 23 38 44

3 4 6 9 10 11 12 13 20 22 23 31 35 36 38 41 44

Transaction obtains S-lock on node 

B, releases lock on node A, reads 

contents of node B to determine 

next node to lock is node C. Obtains 

lock on node C, releases lock on 

node B.

Transaction obtains S-lock on root 

node (A), reads contents to determine 

next node to examine (B), obtains lock 

on node B, releases lock on node A.

A

B

C

D

Transaction reads 

contents of node C, 

determines need for 

node D, obtains S-

lock on D, releases 

lock on node C.



COP 4710: Database Systems  (Transaction Processing)          Page 60 Mark Llewellyn ©

Concurrency Control: Locking in B+ Trees (cont.)

• Notice in the preceding example that the transaction always
maintains a lock on one node in the path, to force new
transactions that want to read or modify nodes on the same
path to wait until the current transaction is done.

• If some other transaction (other than the one doing the search
for key value 38) wants to delete the record containing key
value 38, it must also traverse the same path from root to
node D and is forced to wait until the current transaction has
completed.

– Notice that this also implies that if some earlier transaction preceded
our transaction searching for key value 38, that our searching
transaction would have been similarly delayed as the earlier
transaction would hold the lock on some node in this path.
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Insert Key Value 45

20

10 35

6 12 23 38 44

3 4 6 9 10 11 12 13 20 22 23 31 35 36 38 41 44

Transaction obtains S-lock on node 

B, releases lock on node A, reads 

contents of node B to determine 

next node to lock is node C. 

Obtains lock on node C.  Note that 

the lock on node B cannot be 

released since node C is full and a 

split may cascade to B.

Transaction obtains S-lock on root 

node (A), reads contents to determine 

next node to examine (B), obtains lock 

on node B, releases lock on node A.

A

B

C

D

Transaction reads 

contents of node C, 

determines need for 

node D, obtains X-

lock on D, releases 

locks on nodes B 

and C since node D 

will not split.

45
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Insert Key Value 25

20

10 35

6 12 23 38 44

3 4 6 9 10 11 12 13 20 22 23 31 35 36 38 41 44

Transaction obtains S-lock on node 

B, releases lock on node A, reads 

contents of node B to determine 

next node to lock is node C. 

Obtains lock on node C.  Lock on B 

is released.

Transaction obtains S-lock on root 

node (A), reads contents to 

determine next node to examine 

(B), obtains lock on node B, 

releases lock on node A.

A

B

C

D

Transaction reads contents 

of node C, determines need 

for node D, obtains X-lock 

on D, maintains S-lock on 

node C since node D is full. 

The lock on C must be 

upgraded to an X-lock.  Note 

that an X-lock on node E 

must also be obtained to 

update the sibling pointer in 

E.

E F

G
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Concurrency Control: Locking in B+ Trees (cont.)

• Notice in the preceding example if another transaction holds
an S-lock on node C and also wants to access node D, then a
deadlock situation will occur because the inserting
transaction holds an X-lock on node D.

– Inserting transaction holds an X-lock on node D, and is requesting an upgrade
to an X-lock on node C. The upgrade request cannot be granted because the
other transaction holds an S-lock on node C, further, the other transaction’s
request to access node D cannot be granted since the inserting transaction
already holds an X-lock on node D.

• The previous example also illustrates an interesting point
about sibling pointers: when node D splits, the new node
must be added to the left of node D, otherwise the node
whose sibling pointer needs to be changed would be node F,
which has a different parent.

– To modify a sibling pointer on F, we would have to lock its parent, node G
(and possibly ancestors of G, in order to lock G).
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Deadlock Avoidance - Problems Locking Protocols
(cont.)

• There is also a timestamp based protocol (under locking –

don’t confuse this with timestamp based concurrency

controls we’ll see later) to prevent deadlock under locking

protocols.

• A timestamp is a unique identifier assigned to each

transaction based upon the time a transaction begins.

– if ts(TX) < ts(TY) then TX is the older transaction and TY is the

younger transaction.

– In resolving deadlock issues, the system uses the value of the

timestamp to determine if a transaction should wait or rollback.

Locking is still used to control concurrency.

– Under rollback a transaction retains its original timestamp.
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Deadlock Resolution – Wait or Die

• Assume that TX requests an object whose lock is held by TY.

• This is a non-preemptive strategy where if ts(TX) < ts(TY) (TX is older

than TY) then TX is allowed to wait on TY, otherwise TX dies (is rolled

back). TY continues to hold the lock and TX subsequently restarts with its

original timestamp.

– if request is made by older transaction – it waits on the younger transaction.

– if request is made by younger transaction – it dies.

• Example: let ts(T1) = 5, ts(T2) = 10, ts(T3) = 15

Suppose T2 requests object held by T1. T2 is younger than T1, T2 dies.

Suppose T1 requests object held by T2. T1 is older than T2, T1 waits.
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Deadlock Resolution – Wound or Wait

• Assume that TX requests an object whose lock is held by TY.

• This is a preemptive strategy where if ts(TX) < ts(TY) (TX is older than

TY) then TY is aborted (TX wounds TY). TX preempts the lock and

continues. Otherwise, TX waits on TY.

– if request is made by the younger transaction – it waits on the older

transaction.

– if request is made by older transaction – it preempts the lock and the younger

transaction dies.

• Example: let ts(T1) = 5, ts(T2) = 10, ts(T3) = 15

Suppose T2 requests object held by T1. T2 is younger than T1, T2 waits.

Suppose T1 requests object held by T2. T1 is older than T2, T1 gets

lock and T2 dies.
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Timestamp Deadlock Resolution

• Both wait or die and wound or wait protocols avoid starvation. At any

point in time there is a transaction with the smallest timestamp (i.e.,

oldest transaction) and it will not be rolled back in either scheme.

Operational Differences

– In wait or die, the older transaction waits for the younger one to release its

locks, thus, the older a transaction gets, the more it will wait. In wound or

wait, the older transaction never waits.

– In wait or die protocol if transaction T1 dies and is rolled back it will in

probably be re-issued and generate the same set of requests as before. It is

possible for T1 to die several times before it will be granted the lock it is

requesting as the older transaction is still using the lock. Whereas, in wound

or wait, it would restart once and then be blocked. Typically, the wound or

wait protocol will result in fewer roll backs than does the wait or die protocol.
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Deadlock Avoidance vs. Detection and Resolution

• If the deadlock prevention or avoidance mechanism is not

100% effective, then it is possible for a set of transactions to

become deadlocked.

• Handling this problem can be achieved in one of two basic

manners: optimistically or pessimistically.

• Optimistic approaches tend to wait for deadlock to occur

before doing anything about it, while pessimistic approaches

tend to make sure that deadlock cannot occur.

• Optimistic approaches use detection and resolution schemes

while pessimistic approaches use avoidance mechanisms.
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Deadlock Detection and Resolution

• Deadlock detection and resolution involves two phases:

detection of deadlock and its resolution.

• Deadlock detection is commonly done with wait-for graphs

(a form of a precedence graph). Each node in the graph

represents a transaction in the system. An edge from

transaction TX to transaction TY indicates that TX is waiting

on an object currently held by TY. A deadlock is detected if

the graph contains a cycle.

• The resolution phase or the recovery from the deadlock,

essentially amounts to selecting a victim of the deadlock to

be rolled back, thus breaking the deadlock.
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Deadlock Detection and Resolution (cont.)

• Selection of a victim to resolve the deadlock can be based upon many

different things:

– how long has the transactions been processing?

– how much longer does the transaction require to complete?

– how much data has been read/written?

– how many data items are still needed?

– how many transactions will need to be rolled back?

• Once a victim has been selected you can decide how far back to roll it. It

is not always necessary for a complete restart.

• Deadlock detection and resolution requires some mechanism to prevent

starvation from occurring. Typically this is done by limiting the number

of times a single transaction can be identified as the “victim”.
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Timestamping Concurrency Control

• No locking is used with timestamp concurrency control. Do

not confuse this topic with the timestamped method for

avoiding deadlock under locking.

• As before, each transaction is issued a unique timestamp

indicating the time it arrived in the system.

• The size of the timestamp varies from system to system, but

must be sufficiently large to cover transactions processing

over long periods of time.

• Assignment of the timestamp is typically handled by the

long-term scheduler as transactions are removed from some

sort of input queue.
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Timestamping Concurrency Control (cont.)

• In addition to the transaction’s timestamp, each object in the

database has associated with it two timestamps:

– read timestamp – denoted rts(object), and it represents the highest

timestamp of any transaction which has successfully read this object.

– write timestamp – denoted wts(object), and it represents the highest

timestamp of any transaction to successfully write this object.

• As with locking the granularity of an “object” in the database

becomes a concern here, since the overhead of the

timestamps can be considerable if the granularity is too fine.
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Timestamp Ordering Protocol
READ – transaction TX performs read(object)

if ts(TX) < wts(object)

then rollback TX // implies that the value of the object has been written by a 

// transaction TY which is younger than TX

else // ts(TX) >= wts(object)

execute read(object)

set rts(object_ = max{ rts(object), ts(TX)}

WRITE – transaction TX performs write(object)

if ts(TX) < rts(object)

then rollback TX //implies that the value of the object being produced by TX was 

//read by a transaction TY which is younger than TX and TY

//assumed the value of the object was valid.

else if ts(TX) < wts(object)

then ignore write(object)  //implies that TX is attempting to write an “old”

//value which has been updated by a younger

//transaction.

else

execute write(object

set wts(object) = max{wts(object), ts(TX)}
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Explanation of the Ignore Write Rule

• In the timestamp ordering protocol, when the timestamp of the

transaction attempting to write an object is less than the write

timestamp of the object of concern, the write is simply ignored.

• This is known as Thomas’s write rule.

• Suppose that we have two transactions T1 and T2 where T1 is the

older transaction. T1 attempts to write object X. If ts(T1) <

wts(X) then if T2 was the last transaction to write X, wts(X) =

ts(T2) and between the time T2 wrote X and T1 attempted to write

X, no other transaction Tn read X or otherwise rts(X) > ts(T1) and

T1 would have aborted when attempting to write X. Thus T1 and

T2 have read the same value of X and since T2 is younger, the

value that would have been written by T1 would simply have been

overwritten by T2, so T1’s write can be ignored.
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Example - Timestamp Ordering Protocol

Transactions Objects

time T1 T2 T3 Action A B C

initial ts = 200 ts = 150 ts = 175
rts = 0

wts = 0

rts = 0

wts = 0

rts = 0

wts = 0

1 read B

2 read A

3 read C

4 write B

5 write A

6 write C

7 write A

final

ts(T1) >=  wts(B), OK rts = 200

ts(T2) >=  wts(A), OK rts = 150

ts(T3) >=  wts(C), OK rts = 175

ts(T1) >=  wts(B), OK wts = 200

ts(T1) >=  wts(A), OK wts = 200

ts(T2) <  rts(C), ABORT T2

ts(T3) <  wts(A), IGNORE

rts = 150

wts = 200

rts = 200

wts = 200

rts = 175

wts = 0
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Multiversion Concurrency Control

• Multiversion concurrency control falls into the
optimistic method of concurrency control and also
utilizes transaction timestamps to ensure serializability.

• The basic goal of multiversion concurrency control is to
never block a transaction from reading a database
object.

• This is done by maintaining several versions of each
database object (for objects in play), each with a write
timestamp, and each transaction requesting to read the
object will read the most recent version of the object
whose timestamp precedes that transaction’s timestamp.
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Multiversion Concurrency Control (cont.)

• If a transaction Ti wants to write an object, concurrency control
must ensure that the object has not already be read by some other
transaction Tj such that ts(Ti) < ts(Tj).

• If transaction Ti is allowed to write the object, that change should
be seen by Tj for serializability, but obviously Tj, which read the
object at some time in the past would not see the effect of the write
performed by Ti.

• To check this condition, every object also has an associated read
timestamp, and whenever a transaction reads an object, the read
timestamp is set to the maximum of its current value and the
timestamp of the transaction performing the read.

• If Ti wants to write object O and ts(Ti) < rts(O), then Ti is aborted
and restarted with a new, larger timestamp. Otherwise, Ti creates
a new version of O and sets the read and write timestamps of the
new version to ts(Ti).


